We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
Eigenvalues of polyharmonic operators on variable domains
BUOSO, DAVIDE;LAMBERTI, PIER DOMENICO
2013
Abstract
We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Preprint_Buoso_Lamberti_2013_poly-harmonic.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
270.26 kB
Formato
Adobe PDF
|
270.26 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.