We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.

Eigenvalues of polyharmonic operators on variable domains

BUOSO, DAVIDE;LAMBERTI, PIER DOMENICO
2013

Abstract

We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
2013
File in questo prodotto:
File Dimensione Formato  
Preprint_Buoso_Lamberti_2013_poly-harmonic.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 270.26 kB
Formato Adobe PDF
270.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2687935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
  • OpenAlex ND
social impact