Nanocomposites of a charring polymer (like polyurethane foam) filled with aluminum phosphinate (AlPi) with or without melamine cyanurate (MelCy) have been prepared by microwave processing and their thermal stability and fire behavior have been studied. Results on the interaction between flame retardants and layered silicates were provided as well as detailed investigation of the char strength, which has been carried out using a suitably developed method based on dynamic-mechanic analysis. Generally, the thermo-oxidative stability in presence of layered silicates was higher than the counterparts even if an additive rather than synergic effect took place; however, in some cases the interaction between clays and phosphinate led to a significant decrease of weight residue. In nitrogen the residue amounts were about the same but a higher amount of phosphorus was retained in the solid phase in presence of clays. Cone calorimeter results showed that the use of phosphinates led to a decrease of the PHRR; further addition of clays did not reduce the PHRR owing to the worse quality of char layer as demonstrated by the char strength test. However, it has been shown that the partial substitution of aluminum phosphinate with melamine cyanurate gave improved results: the AlPieMelCy filled foams showed similar pHRR and THE but lower TSR and higher char strength than AlPi filled foams. It was also confirmed that phosphinate acted by flame inhibition but its action was depressed by the use of nanoclays owing to their interaction.
Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams
LORENZETTI, ALESSANDRA;BESCO, STEFANO;HRELJA, DENIS;ROSO, MARTINA;MODESTI, MICHELE
2013
Abstract
Nanocomposites of a charring polymer (like polyurethane foam) filled with aluminum phosphinate (AlPi) with or without melamine cyanurate (MelCy) have been prepared by microwave processing and their thermal stability and fire behavior have been studied. Results on the interaction between flame retardants and layered silicates were provided as well as detailed investigation of the char strength, which has been carried out using a suitably developed method based on dynamic-mechanic analysis. Generally, the thermo-oxidative stability in presence of layered silicates was higher than the counterparts even if an additive rather than synergic effect took place; however, in some cases the interaction between clays and phosphinate led to a significant decrease of weight residue. In nitrogen the residue amounts were about the same but a higher amount of phosphorus was retained in the solid phase in presence of clays. Cone calorimeter results showed that the use of phosphinates led to a decrease of the PHRR; further addition of clays did not reduce the PHRR owing to the worse quality of char layer as demonstrated by the char strength test. However, it has been shown that the partial substitution of aluminum phosphinate with melamine cyanurate gave improved results: the AlPieMelCy filled foams showed similar pHRR and THE but lower TSR and higher char strength than AlPi filled foams. It was also confirmed that phosphinate acted by flame inhibition but its action was depressed by the use of nanoclays owing to their interaction.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.