Stromatic metatexites occurring structurally below the contact with the Ronda peridotite (Ojen nappe, Betic Cordillera, S Spain) are characterized by the mineral assemblage Qtz+Pl+Kfs+Bt+Sil+Grt+ Ap+Gr+Ilm. Garnet occurs in low modal amount (2–5 vol.%). Very rare muscovite is present as armoured inclusions, indicating prograde exhaustion. Microstructural evidence of melting in the migmatites includes pseudomorphs after melt films and nanogranite and glassy inclusions hosted in garnet cores. The latter microstructure demonstrates that garnet crystallized in the presence of melt. Re-melted nanogranites and preserved glassy inclusions show leucogranitic compositions. Phase equilibria modelling of the stromatic migmatite in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2– H2–O2–C (MnNCaKFMASHOC) system with graphite-saturated fluid shows P–T conditions of equilibration of 4.5–5 kbar, 660–700 °C. These results are consistent with the complete experimental re-melting of nanogranites at 700 °C and indicate that nanogranites represent the anatectic melt generated immediately after entering supersolidus conditions. The P–T estimate for garnet and melt development does not, however, overlap with the low-temperature tip of the pure melt field in the phase diagram calculated for the composition of preserved glassy inclusions in garnet in the Na2O– CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system. A comparison of measured melt compositions formed immediately beyond the solidus with results of phase equilibria modelling points to the systematic underestimation of FeO, MgO and CaO in the calculated melt. These discrepancies are present also when calculated melts are compared with low-T natural and experimental melts from the literature. Under such conditions, the available melt model does not perform well. Given the presence of melt inclusions in garnet cores and the P–T estimates for their formation, we argue that small amounts (<5 vol.%) of peritectic garnet may grow at low temperatures (≤700 °C), as a result of continuous melting reactions consuming biotite.

Phase equilibria constraints on melting of stromatic migmatites from Ronda (S. Spain): insights on the formation of peritectic garnet

BARTOLI, OMAR;CESARE, BERNARDO;
2013

Abstract

Stromatic metatexites occurring structurally below the contact with the Ronda peridotite (Ojen nappe, Betic Cordillera, S Spain) are characterized by the mineral assemblage Qtz+Pl+Kfs+Bt+Sil+Grt+ Ap+Gr+Ilm. Garnet occurs in low modal amount (2–5 vol.%). Very rare muscovite is present as armoured inclusions, indicating prograde exhaustion. Microstructural evidence of melting in the migmatites includes pseudomorphs after melt films and nanogranite and glassy inclusions hosted in garnet cores. The latter microstructure demonstrates that garnet crystallized in the presence of melt. Re-melted nanogranites and preserved glassy inclusions show leucogranitic compositions. Phase equilibria modelling of the stromatic migmatite in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2– H2–O2–C (MnNCaKFMASHOC) system with graphite-saturated fluid shows P–T conditions of equilibration of 4.5–5 kbar, 660–700 °C. These results are consistent with the complete experimental re-melting of nanogranites at 700 °C and indicate that nanogranites represent the anatectic melt generated immediately after entering supersolidus conditions. The P–T estimate for garnet and melt development does not, however, overlap with the low-temperature tip of the pure melt field in the phase diagram calculated for the composition of preserved glassy inclusions in garnet in the Na2O– CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system. A comparison of measured melt compositions formed immediately beyond the solidus with results of phase equilibria modelling points to the systematic underestimation of FeO, MgO and CaO in the calculated melt. These discrepancies are present also when calculated melts are compared with low-T natural and experimental melts from the literature. Under such conditions, the available melt model does not perform well. Given the presence of melt inclusions in garnet cores and the P–T estimates for their formation, we argue that small amounts (<5 vol.%) of peritectic garnet may grow at low temperatures (≤700 °C), as a result of continuous melting reactions consuming biotite.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2675652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
  • OpenAlex ND
social impact