The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization.

An input–output hidden Markov model for tree transductions

SPERDUTI, ALESSANDRO
2013

Abstract

The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2578588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact