Let $X$ be a complex manifold. The classical Riemann-Hilbert correspondence associates to a regular holonomic system $\mathcal{M}$ the $\mathbf{C}$-constructible complex of its holomorphic solutions. Let $t$ be the affine coordinate in the complex projective line. If $\mathcal{M}$ is not necessarily regular, we associate to it the ind-$\mathbf{R}$-constructible complex $G$ of tempered holomorphic solutions to $\mathcal{M}\boxtimes\mathcal{D} e^{t}$. We conjecture that this provides a Riemann-Hilbert correspondence for holonomic systems. We discuss the functoriality of this correspondence, we prove that $\mathcal{M}$ can be reconstructed from $G$ if $\dim X=1$, and we show how the Stokes data are encoded in $G$.

On a reconstruction theorem for holonomic systems

Andrea D'Agnolo;
2012

Abstract

Let $X$ be a complex manifold. The classical Riemann-Hilbert correspondence associates to a regular holonomic system $\mathcal{M}$ the $\mathbf{C}$-constructible complex of its holomorphic solutions. Let $t$ be the affine coordinate in the complex projective line. If $\mathcal{M}$ is not necessarily regular, we associate to it the ind-$\mathbf{R}$-constructible complex $G$ of tempered holomorphic solutions to $\mathcal{M}\boxtimes\mathcal{D} e^{t}$. We conjecture that this provides a Riemann-Hilbert correspondence for holonomic systems. We discuss the functoriality of this correspondence, we prove that $\mathcal{M}$ can be reconstructed from $G$ if $\dim X=1$, and we show how the Stokes data are encoded in $G$.
File in questo prodotto:
File Dimensione Formato  
DAK.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 107.13 kB
Formato Adobe PDF
107.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2552693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact