We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in Rn, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace, whose image under f has positive Hα measure for some fixed α > m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples.

Frequency of Sobolev and quasiconformal dimension distortion

MONTI, ROBERTO;
2013

Abstract

We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in Rn, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace, whose image under f has positive Hα measure for some fixed α > m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2530917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact