We propose a CMOS front-end circuit suitable for Silicon Photomultiplier detectors (SiPM) based on a current buffer, as input stage, which features small input impedance and large bandwidth, thanks to the application of current feedback techniques. The current mode approach enhances the dynamic range of the front-end and does not suffer from possible voltage limitations due to deep-submicron CMOS implementation. We report the first measurement results obtained by coupling the circuit prototype to a SiPM detector excited by a blue LED light source. The measurements confirm the effectiveness of the proposed front-end approach and demonstrate its capability of managing large current signals with good linearity. © 2007 IEEE.

Preliminary results from a current mode CMOS front-end circuit for silicon photomultiplier detectors

COLLAZUOL, GIANMARIA;
2007

Abstract

We propose a CMOS front-end circuit suitable for Silicon Photomultiplier detectors (SiPM) based on a current buffer, as input stage, which features small input impedance and large bandwidth, thanks to the application of current feedback techniques. The current mode approach enhances the dynamic range of the front-end and does not suffer from possible voltage limitations due to deep-submicron CMOS implementation. We report the first measurement results obtained by coupling the circuit prototype to a SiPM detector excited by a blue LED light source. The measurements confirm the effectiveness of the proposed front-end approach and demonstrate its capability of managing large current signals with good linearity. © 2007 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2530358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact