We introduce a new family of fractional convolution quadratures based on generalized Adams methods for the numerical solution of fractional differential equations. We discuss their accuracy and linear stability properties. The boundary loci reported show that, when used as Boundary Value Methods, these schemes overcome the classical order barrier for A-stable methods

Generalized Adams methods for fractional differential equations

NOVATI, PAOLO
2012

Abstract

We introduce a new family of fractional convolution quadratures based on generalized Adams methods for the numerical solution of fractional differential equations. We discuss their accuracy and linear stability properties. The boundary loci reported show that, when used as Boundary Value Methods, these schemes overcome the classical order barrier for A-stable methods
2012
AIP CONFERENCE PROCEEDINGS
ICNAAM 2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2529296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact