This paper presents recent measurements of heat transfer coefficient obtained during condensation of R32 inside a commercial brazed plate heat exchanger (BPHE). The experimental data show the effect of refrigerant mass velocity, vapor quality, temperature difference (saturation-to-wall) and inlet vapor superheating. In particular, the specific mass velocity is varied between 15 and 40 kg m−2 s−1 and the outlet vapor quality between 0.0 and 0.65, while inlet vapor superheating goes from 5 to 25 K. The saturation temperature is kept constant at around 36.5°C, which can be considered a usual temperature level for water cooled heat pump applications. The present authors provide a numerical procedure to calculate the condensation heat transfer in the BPHE, accounting also for the superheating effect. This model is assessed by comparisons with the experimental measurements relative to R32, R410A, and R744.
R32 partial condensation inside a brazed plate heat exchanger
MANCIN, SIMONE;DEL COL, DAVIDE;ROSSETTO, LUISA
2013
Abstract
This paper presents recent measurements of heat transfer coefficient obtained during condensation of R32 inside a commercial brazed plate heat exchanger (BPHE). The experimental data show the effect of refrigerant mass velocity, vapor quality, temperature difference (saturation-to-wall) and inlet vapor superheating. In particular, the specific mass velocity is varied between 15 and 40 kg m−2 s−1 and the outlet vapor quality between 0.0 and 0.65, while inlet vapor superheating goes from 5 to 25 K. The saturation temperature is kept constant at around 36.5°C, which can be considered a usual temperature level for water cooled heat pump applications. The present authors provide a numerical procedure to calculate the condensation heat transfer in the BPHE, accounting also for the superheating effect. This model is assessed by comparisons with the experimental measurements relative to R32, R410A, and R744.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.