We introduce n/pα-harmonic maps as critical points of the energy En;pα (v)= Rn δ α /2 v pα where pointwise v W D n → SN-1, for the N-sphere SN-1 RN and pα D n/α . This energy combines the non-local behaviour of the fractional harmonic maps introduced by Rivière and the first author with the degenerate arguments of the n-Laplacian. In this setting, we will prove Hölder continuity. © 2014 de Gruyter.
N=p-harmonic maps: Regularity for the sphere case
DA LIO, FRANCESCA;
2014
Abstract
We introduce n/pα-harmonic maps as critical points of the energy En;pα (v)= Rn δ α /2 v pα where pointwise v W D n → SN-1, for the N-sphere SN-1 RN and pα D n/α . This energy combines the non-local behaviour of the fractional harmonic maps introduced by Rivière and the first author with the degenerate arguments of the n-Laplacian. In this setting, we will prove Hölder continuity. © 2014 de Gruyter.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
acv-2012-0107.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
414.02 kB
Formato
Adobe PDF
|
414.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.