We introduce n/pα-harmonic maps as critical points of the energy En;pα (v)= Rn δ α /2 v pα where pointwise v W D n → SN-1, for the N-sphere SN-1 RN and pα D n/α . This energy combines the non-local behaviour of the fractional harmonic maps introduced by Rivière and the first author with the degenerate arguments of the n-Laplacian. In this setting, we will prove Hölder continuity. © 2014 de Gruyter.

N=p-harmonic maps: Regularity for the sphere case

DA LIO, FRANCESCA;
2014

Abstract

We introduce n/pα-harmonic maps as critical points of the energy En;pα (v)= Rn δ α /2 v pα where pointwise v W D n → SN-1, for the N-sphere SN-1 RN and pα D n/α . This energy combines the non-local behaviour of the fractional harmonic maps introduced by Rivière and the first author with the degenerate arguments of the n-Laplacian. In this setting, we will prove Hölder continuity. © 2014 de Gruyter.
File in questo prodotto:
File Dimensione Formato  
acv-2012-0107.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 414.02 kB
Formato Adobe PDF
414.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2527528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact