In Ergodic Theory it is natural to consider the pointwise convergence of finite time averages of functions with respect to the flow of dynamical systems. Since the pointwise convergence is too weak for applications to Hamiltonian Perturbation Theory, requiring differentiability, we first introduce regularized averages obtained through a stochastic perturbation of an integrable Hamiltonian flow, and then we provide detailed estimates. In particular, for a special vanishing limit of the stochastic perturbation, we obtain convergence even in a Sobolev norm taking into account the derivatives.

Convergence to the time average by stochastic regularization

BERNARDI, OLGA;CARDIN, FRANCO;GUZZO, MASSIMILIANO
2013

Abstract

In Ergodic Theory it is natural to consider the pointwise convergence of finite time averages of functions with respect to the flow of dynamical systems. Since the pointwise convergence is too weak for applications to Hamiltonian Perturbation Theory, requiring differentiability, we first introduce regularized averages obtained through a stochastic perturbation of an integrable Hamiltonian flow, and then we provide detailed estimates. In particular, for a special vanishing limit of the stochastic perturbation, we obtain convergence even in a Sobolev norm taking into account the derivatives.
File in questo prodotto:
File Dimensione Formato  
BCG-time average-2013.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 752.85 kB
Formato Adobe PDF
752.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2526385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact