In Ergodic Theory it is natural to consider the pointwise convergence of finite time averages of functions with respect to the flow of dynamical systems. Since the pointwise convergence is too weak for applications to Hamiltonian Perturbation Theory, requiring differentiability, we first introduce regularized averages obtained through a stochastic perturbation of an integrable Hamiltonian flow, and then we provide detailed estimates. In particular, for a special vanishing limit of the stochastic perturbation, we obtain convergence even in a Sobolev norm taking into account the derivatives.
Convergence to the time average by stochastic regularization
BERNARDI, OLGA;CARDIN, FRANCO;GUZZO, MASSIMILIANO
2013
Abstract
In Ergodic Theory it is natural to consider the pointwise convergence of finite time averages of functions with respect to the flow of dynamical systems. Since the pointwise convergence is too weak for applications to Hamiltonian Perturbation Theory, requiring differentiability, we first introduce regularized averages obtained through a stochastic perturbation of an integrable Hamiltonian flow, and then we provide detailed estimates. In particular, for a special vanishing limit of the stochastic perturbation, we obtain convergence even in a Sobolev norm taking into account the derivatives.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BCG-time average-2013.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
752.85 kB
Formato
Adobe PDF
|
752.85 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.