Single-phase positive sequence modelling is often used in power systems when power flows and short circuit analysis are assessed. Of course, the use of single-phase positive sequence modelling assumes purely three-phase configurations and perfectly symmetrical ones so that single-phase modelling considers that all the phase conductors behave in the same way. When considering the physical reality of power networks, this assumption can be questionable and the behaviors of all the system conductors including the passive ones (earth wires for overhead lines, metallic screens and armours for cables and enclosures for gas insulated lines) is completely unknown. Therefore, the present multiconductor cell analysis (MCA) becomes necessary, since it allows one to achieve great precision results on the regimes of both phase conductors and passive conductors. MCA offers a powerful tool in order to validate (or less) approximated and simplified computation methods. In particular, for single and double circuit overhead lines (OHLs), the current phasors induced in the earth wires and the ground return current alongside the line can be directly computed by MCA in steady state and faulty regimes. It is worth noting that, for faulty regimes, MCA allows also evaluating the approximation degree and validity field of screening factors k.
Determination of Steady-State and Faulty Regimes of Overhead Lines by Means of Multiconductor Cell Analysis (MCA)
BENATO, ROBERTO;DAMBONE SESSA, SEBASTIAN;
2012
Abstract
Single-phase positive sequence modelling is often used in power systems when power flows and short circuit analysis are assessed. Of course, the use of single-phase positive sequence modelling assumes purely three-phase configurations and perfectly symmetrical ones so that single-phase modelling considers that all the phase conductors behave in the same way. When considering the physical reality of power networks, this assumption can be questionable and the behaviors of all the system conductors including the passive ones (earth wires for overhead lines, metallic screens and armours for cables and enclosures for gas insulated lines) is completely unknown. Therefore, the present multiconductor cell analysis (MCA) becomes necessary, since it allows one to achieve great precision results on the regimes of both phase conductors and passive conductors. MCA offers a powerful tool in order to validate (or less) approximated and simplified computation methods. In particular, for single and double circuit overhead lines (OHLs), the current phasors induced in the earth wires and the ground return current alongside the line can be directly computed by MCA in steady state and faulty regimes. It is worth noting that, for faulty regimes, MCA allows also evaluating the approximation degree and validity field of screening factors k.File | Dimensione | Formato | |
---|---|---|---|
energies-05-02771[1].pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.