We prove for a large family of rings R that their lambda-pure global dimension is greater than one for each infinite regular cardinal lambda. This answers in negative a problem posed by Rosicky. The derived categories of such rings then do not satisfy the Adams lambda-representability for morphisms for any lambda. Equivalently, they are examples of well generated triangulated categories whose lambda-abelianization in the sense of Neeman is not a full functor for any lambda. In particular we show that given a compactly generated triangulated category, one may not be able to find a Rosicky functor among the lambda-abelianization functors.

On the abelianization of derived categories and a negative solution to Rosicky's problem

BAZZONI, SILVANA;
2013

Abstract

We prove for a large family of rings R that their lambda-pure global dimension is greater than one for each infinite regular cardinal lambda. This answers in negative a problem posed by Rosicky. The derived categories of such rings then do not satisfy the Adams lambda-representability for morphisms for any lambda. Equivalently, they are examples of well generated triangulated categories whose lambda-abelianization in the sense of Neeman is not a full functor for any lambda. In particular we show that given a compactly generated triangulated category, one may not be able to find a Rosicky functor among the lambda-abelianization functors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2525385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact