We define a class of interfaces in random exchange Ising ferromagnets that are associated with nonequilibrium states of the system. We find that the interfaces are fractal and have a fractal dimension of about 1.6. The scaling properties are reburst and characteristic of a new universality class. Our results suggest the possibility that the fractal structures observed in nature need not be related to the true equilibrium of the system.

Scaling properties of suboptimal interfaces

MARITAN, AMOS;
1996

Abstract

We define a class of interfaces in random exchange Ising ferromagnets that are associated with nonequilibrium states of the system. We find that the interfaces are fractal and have a fractal dimension of about 1.6. The scaling properties are reburst and characteristic of a new universality class. Our results suggest the possibility that the fractal structures observed in nature need not be related to the true equilibrium of the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2517352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact