A new approach to the optimal control of diffusion processes based on Lagrange functionals is presented. The method is conceptually and technically simpler than existing ones. A first class of functionals allows to obtain optimality conditions without any resort to stochastic calculus and functional analysis. A second class, which requires Ito's rule, allows to establish optimality in a larger class of problems. Calculations in these two methods are sometimes akin to those in minimum principles and in dynamic programming, but the thinking behind them is new. A few examples are worked out to illustrate the power and simplicity of this approach.
Lagrange Approach To the Optimal-control of Diffusions
PAVON, MICHELE
1993
Abstract
A new approach to the optimal control of diffusion processes based on Lagrange functionals is presented. The method is conceptually and technically simpler than existing ones. A first class of functionals allows to obtain optimality conditions without any resort to stochastic calculus and functional analysis. A second class, which requires Ito's rule, allows to establish optimality in a larger class of problems. Calculations in these two methods are sometimes akin to those in minimum principles and in dynamic programming, but the thinking behind them is new. A few examples are worked out to illustrate the power and simplicity of this approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.