We report on excitonic spectra of armchair graphene nanoribbons (AGNRs) obtained from a full many-body exact diagonalization of the Hubbard model within low and intermediate correlation regimes and with a complete characterization of the spin multiplicity of the calculated eigenstates. Our results allow us to group these systems into three different families according to the sequence of the one-and two-photon allowed states and the magnitude of the respective optical oscillator strengths within the investigated correlation regime. The oscillator strengths for the one-photon allowed transitions are found to be lower than those obtained previously for zigzag semiconducting single-walled carbon nanotubes, pointing out a qualitatively different photophysical behaviour of AGNRs.
Excitonic properties of armchair graphene nanoribbons from exact diagonalization of the Hubbard model
ALFONSI, JESSICA;MENEGHETTI, MORENO
2012
Abstract
We report on excitonic spectra of armchair graphene nanoribbons (AGNRs) obtained from a full many-body exact diagonalization of the Hubbard model within low and intermediate correlation regimes and with a complete characterization of the spin multiplicity of the calculated eigenstates. Our results allow us to group these systems into three different families according to the sequence of the one-and two-photon allowed states and the magnitude of the respective optical oscillator strengths within the investigated correlation regime. The oscillator strengths for the one-photon allowed transitions are found to be lower than those obtained previously for zigzag semiconducting single-walled carbon nanotubes, pointing out a qualitatively different photophysical behaviour of AGNRs.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.