A computational protocol combining a heuristic search based on genetic algorithms (GAs) and quantum chemistry methods is implemented and applied to a family of acceptor compounds based on the 9,9'-bifluorenylidene backbone, to be coupled with the poly-3(hexylthiophene) polymer (donor) in a bulk heterojunction solar cell. Highly performing candidates are generated via GA from an initial generation, after a number of iterations (i.e., new generations), under the selective pressure of electronic constrains calculated at density functional theory level. The combination of heuristic search techniques and advanced electronic structure methodologies for characterization seems to be amenable to further applications in the field of molecular design.

Heuristic approaches to the optimization of acceptor systems in bulk heterojunction cells: a computational study

CARLOTTO, SILVIA;ORIAN, LAURA;POLIMENO, ANTONINO
2012

Abstract

A computational protocol combining a heuristic search based on genetic algorithms (GAs) and quantum chemistry methods is implemented and applied to a family of acceptor compounds based on the 9,9'-bifluorenylidene backbone, to be coupled with the poly-3(hexylthiophene) polymer (donor) in a bulk heterojunction solar cell. Highly performing candidates are generated via GA from an initial generation, after a number of iterations (i.e., new generations), under the selective pressure of electronic constrains calculated at density functional theory level. The combination of heuristic search techniques and advanced electronic structure methodologies for characterization seems to be amenable to further applications in the field of molecular design.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2506425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact