An interesting result of magnetic chaos reduction in RFX-mod high current discharges is the development of strong electron transport barriers. An internal heat and particle transport barrier is formed when a bifurcation process changes the magnetic configuration into a helical equilibrium and chaos reduction follows, together with the formation of a null in the q shear. Strong temperature gradients develop, corresponding to a decreased thermal and particle transport. Turbulence analysis shows that the large electron temperature gradients are limited by the onset of micro-tearing modes, in addition to residual magnetic chaos. A new type of electron transport barrier with strong temperature gradients develops more externally (r/a = 0.8) accompanied by a 30% improvement of the global confinement time. The mechanism responsible for the formation of such a barrier is still unknown but it is likely associated with a local reduction of magnetic chaos. These external barriers develop primarily in situations of well-conditioned walls so that they might be regarded as attempts towards an L-H transition. Both types of barriers occur in high-current low-collisionality regimes. Analogies with tokamak and stellarators are discussed.

Internal and external electron transport barriers in the RFX-mod reversed field pinch

ALFIER, ALBERTO;T. Bolzonella;DE MASI, GIANLUCA;GAZZA, ERICA;MARTIN, PIERO;PIRON, LIDIA;PREDEBON, ITALO;RUZZON, ALBERTO;SPAGNOLO, SILVIA;VERANDA, MARCO;
2011

Abstract

An interesting result of magnetic chaos reduction in RFX-mod high current discharges is the development of strong electron transport barriers. An internal heat and particle transport barrier is formed when a bifurcation process changes the magnetic configuration into a helical equilibrium and chaos reduction follows, together with the formation of a null in the q shear. Strong temperature gradients develop, corresponding to a decreased thermal and particle transport. Turbulence analysis shows that the large electron temperature gradients are limited by the onset of micro-tearing modes, in addition to residual magnetic chaos. A new type of electron transport barrier with strong temperature gradients develops more externally (r/a = 0.8) accompanied by a 30% improvement of the global confinement time. The mechanism responsible for the formation of such a barrier is still unknown but it is likely associated with a local reduction of magnetic chaos. These external barriers develop primarily in situations of well-conditioned walls so that they might be regarded as attempts towards an L-H transition. Both types of barriers occur in high-current low-collisionality regimes. Analogies with tokamak and stellarators are discussed.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2503525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact