We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.

A Proof of Nekhoroshev Theorem For the Stability Times In Nearly Integrable Hamiltonian-systems

BENETTIN, GIANCARLO;
1985

Abstract

We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.
1985
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2497481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 127
  • OpenAlex ND
social impact