Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A +/- 2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A +/- 2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis shows that the improved treatment plays a role close to magicity, leading to an enhancement of the pair-transfer probability. In midshell regions, part of the error made by approximating the initial and final ground states by a single vacuum is compensated by projecting onto a good particle number. Surface effects are analyzed by using pairing interactions with a different volume-to-surface mixing. Finally, a simple expression of the pair-transfer probability is given in terms of occupation probabilities in the canonical basis. We show that, in the canonical basis formulation, surface effects that are visible in the transfer probability are related to the fragmentation of single-particle occupancies close to the Fermi energy. This provides a complementary interpretation with respect to the standard quasiparticle representation where surface effects are generated by the integrated radial profiles of the contributing wave functions.
Pair-transfer probability in open- and closed-shell Sn isotopes
VITTURI, ANDREA
2012
Abstract
Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A +/- 2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A +/- 2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis shows that the improved treatment plays a role close to magicity, leading to an enhancement of the pair-transfer probability. In midshell regions, part of the error made by approximating the initial and final ground states by a single vacuum is compensated by projecting onto a good particle number. Surface effects are analyzed by using pairing interactions with a different volume-to-surface mixing. Finally, a simple expression of the pair-transfer probability is given in terms of occupation probabilities in the canonical basis. We show that, in the canonical basis formulation, surface effects that are visible in the transfer probability are related to the fragmentation of single-particle occupancies close to the Fermi energy. This provides a complementary interpretation with respect to the standard quasiparticle representation where surface effects are generated by the integrated radial profiles of the contributing wave functions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.