Let $\Lambda$ be the von Mangoldt function and \( r_{\textit{HL}}(n) = \sum_{m_1 + m_2^2 = n} \Lambda(m_1), \) be the counting function for the Hardy-Littlewood numbers. Let $N$ be a sufficiently large integer. We prove that % \begin{align*} \sum_{n \le N} r_{\textit{HL}}(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} &= \frac{\pi^{1 / 2}}2 \frac{N^{3 / 2}}{\Gamma(k + 5 / 2)} - \frac 12 \frac{N}{\Gamma(k + 2)} - \frac{\pi^{1 / 2}}2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 3 / 2 + \rho)} N^{1 / 2 + \rho} \\ &+ \frac 12 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 1 + \rho)} N^{\rho} + \frac{N^{3 / 4 - k / 2}}{\pi^{k + 1}} \sum_{\ell \ge 1} \frac{J_{k + 3 / 2} (2 \pi \ell N^{1 / 2})}{\ell^{k + 3 / 2}} \\ &- \frac{N^{1 / 4 - k / 2}}{\pi^k} \sum_{\rho} \Gamma(\rho) \frac{N^{\rho / 2}}{\pi^\rho} \sum_{\ell \ge 1} \frac{J_{k + 1 / 2 + \rho} (2 \pi \ell N^{1 / 2})} {\ell^{k + 1 / 2 + \rho}} + \Odip{k}{1}. \end{align*} % for $k > 1$, where $\rho$ runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$ and $J_{\nu} (u)$ denotes the Bessel function of complex order $\nu$ and real argument $u$.
A Cesàro average for Hardy-Littlewood numbers
LANGUASCO, ALESSANDRO;
2013
Abstract
Let $\Lambda$ be the von Mangoldt function and \( r_{\textit{HL}}(n) = \sum_{m_1 + m_2^2 = n} \Lambda(m_1), \) be the counting function for the Hardy-Littlewood numbers. Let $N$ be a sufficiently large integer. We prove that % \begin{align*} \sum_{n \le N} r_{\textit{HL}}(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} &= \frac{\pi^{1 / 2}}2 \frac{N^{3 / 2}}{\Gamma(k + 5 / 2)} - \frac 12 \frac{N}{\Gamma(k + 2)} - \frac{\pi^{1 / 2}}2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 3 / 2 + \rho)} N^{1 / 2 + \rho} \\ &+ \frac 12 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 1 + \rho)} N^{\rho} + \frac{N^{3 / 4 - k / 2}}{\pi^{k + 1}} \sum_{\ell \ge 1} \frac{J_{k + 3 / 2} (2 \pi \ell N^{1 / 2})}{\ell^{k + 3 / 2}} \\ &- \frac{N^{1 / 4 - k / 2}}{\pi^k} \sum_{\rho} \Gamma(\rho) \frac{N^{\rho / 2}}{\pi^\rho} \sum_{\ell \ge 1} \frac{J_{k + 1 / 2 + \rho} (2 \pi \ell N^{1 / 2})} {\ell^{k + 1 / 2 + \rho}} + \Odip{k}{1}. \end{align*} % for $k > 1$, where $\rho$ runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$ and $J_{\nu} (u)$ denotes the Bessel function of complex order $\nu$ and real argument $u$.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.