Let $\Lambda$ be the von Mangoldt function and % \( r_G(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \) % be the counting function for the Goldbach numbers. Let $N \geq 2$ be an integer. We prove that % \begin{align*} &\sum_{n \le N} r_G(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} = \frac{N^{2}}{\Gamma(k + 3)} - 2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho+1} \\ &\qquad+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + \Odip{k}{N^{1/2}}, \end{align*} % for $k > 1$, where $\rho$, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$.

A Cesàro average of Goldbach numbers

LANGUASCO, ALESSANDRO;
2015

Abstract

Let $\Lambda$ be the von Mangoldt function and % \( r_G(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \) % be the counting function for the Goldbach numbers. Let $N \geq 2$ be an integer. We prove that % \begin{align*} &\sum_{n \le N} r_G(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} = \frac{N^{2}}{\Gamma(k + 3)} - 2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho+1} \\ &\qquad+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + \Odip{k}{N^{1/2}}, \end{align*} % for $k > 1$, where $\rho$, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$.
2015
File in questo prodotto:
File Dimensione Formato  
[39].pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 250.51 kB
Formato Adobe PDF
250.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2493908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact