Let $\Lambda$ be the von Mangoldt function and % \( r_G(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \) % be the counting function for the Goldbach numbers. Let $N \geq 2$ be an integer. We prove that % \begin{align*} &\sum_{n \le N} r_G(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} = \frac{N^{2}}{\Gamma(k + 3)} - 2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho+1} \\ &\qquad+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + \Odip{k}{N^{1/2}}, \end{align*} % for $k > 1$, where $\rho$, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$.
A Cesàro average of Goldbach numbers
LANGUASCO, ALESSANDRO;
2015
Abstract
Let $\Lambda$ be the von Mangoldt function and % \( r_G(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \) % be the counting function for the Goldbach numbers. Let $N \geq 2$ be an integer. We prove that % \begin{align*} &\sum_{n \le N} r_G(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} = \frac{N^{2}}{\Gamma(k + 3)} - 2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho+1} \\ &\qquad+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + \Odip{k}{N^{1/2}}, \end{align*} % for $k > 1$, where $\rho$, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-function $\zeta(s)$.File | Dimensione | Formato | |
---|---|---|---|
[39].pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
250.51 kB
Formato
Adobe PDF
|
250.51 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.