In protein structure prediction it is essential to score quickly and reliably large sets of models by selecting the ones that are closest to the native state. We here present a novel statistical potential constructed by Bayesian analysis measuring a few structural observables on a set of 500 experimental protein structures. Even though employing much less parameters than current state-of-the-art methods, our potential is capable of discriminating with an unprecedented reliability the native state in large sets of misfolded models of the same protein. We also introduce the new idea that thermal fluctuations cannot be neglected for scoring models that are very similar to each other. In these cases, the best structure can be recognized only by comparing the probability distributions of our potential over short finite temperature molecular dynamics simulations starting from the competing models.

A simple and efficient statistical potential for scoring ensembles of protein structures

SENO, FLAVIO;TROVATO, ANTONIO
2012

Abstract

In protein structure prediction it is essential to score quickly and reliably large sets of models by selecting the ones that are closest to the native state. We here present a novel statistical potential constructed by Bayesian analysis measuring a few structural observables on a set of 500 experimental protein structures. Even though employing much less parameters than current state-of-the-art methods, our potential is capable of discriminating with an unprecedented reliability the native state in large sets of misfolded models of the same protein. We also introduce the new idea that thermal fluctuations cannot be neglected for scoring models that are very similar to each other. In these cases, the best structure can be recognized only by comparing the probability distributions of our potential over short finite temperature molecular dynamics simulations starting from the competing models.
2012
File in questo prodotto:
File Dimensione Formato  
srep00351.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2492235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 41
  • OpenAlex ND
social impact