Because neurotensin (NT) and its highaffinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced inflammatory damage developed. Colitis-induced body weight loss, colonic myeloperoxidase activity, and histological damage were significantly enhanced by SR-48642 administration, a nonpeptide NTR1 antagonist, whereas continuous NT infusion ameliorated colitis outcome. To evaluate the NT and NTR1 role in tissue healing, mucosal inflammatory injury was established administering 3% DSS for 5 days. After DSS discontinuation, mice rapidly gained weight, ulcers were healed, and colonic NT, NTR1, and cyclooxygenase (COX)-2 mRNA levels were upregulated, whereas SR-48642 treatment caused a further body weight loss, ulcer enlargement, and a blunted colonic COX-2 mRNA upregulation. In a woundhealing model in vitro, NT-induced cell migration in the denuded area was inhibited by indomethacin but not by an antitransforming growth factor- neutralizing antibody. Furthermore, NT significantly increased COX-2 mRNA levels by 2.4-fold and stimulated PGE2 release in HT-29 cells. These findings suggest that NT and NTR1 are part of the network activated after mucosal injuries and that NT stimulates epithelial restitution at least, in part, through a COX-2 dependent pathway

Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation.

BRUN, PAOLA;BARZON, LUISA;STURNIOLO, GIACOMO;PALU', GIORGIO;CASTAGLIUOLO, IGNAZIO
2005

Abstract

Because neurotensin (NT) and its highaffinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced inflammatory damage developed. Colitis-induced body weight loss, colonic myeloperoxidase activity, and histological damage were significantly enhanced by SR-48642 administration, a nonpeptide NTR1 antagonist, whereas continuous NT infusion ameliorated colitis outcome. To evaluate the NT and NTR1 role in tissue healing, mucosal inflammatory injury was established administering 3% DSS for 5 days. After DSS discontinuation, mice rapidly gained weight, ulcers were healed, and colonic NT, NTR1, and cyclooxygenase (COX)-2 mRNA levels were upregulated, whereas SR-48642 treatment caused a further body weight loss, ulcer enlargement, and a blunted colonic COX-2 mRNA upregulation. In a woundhealing model in vitro, NT-induced cell migration in the denuded area was inhibited by indomethacin but not by an antitransforming growth factor- neutralizing antibody. Furthermore, NT significantly increased COX-2 mRNA levels by 2.4-fold and stimulated PGE2 release in HT-29 cells. These findings suggest that NT and NTR1 are part of the network activated after mucosal injuries and that NT stimulates epithelial restitution at least, in part, through a COX-2 dependent pathway
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2491928
Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 81
  • OpenAlex ND
social impact