In this paper the out-of-sample prediction of Value-at-Risk by means of models accounting for higher moments is studied. We consider models differing in terms of skewness and kurtosis and, in particular, the GARCHDSK model, which allows for constant and dynamic skewness and kurtosis. The issue of VaR prediction performance is approached first from a purely statistical viewpoint, studying the properties concerning correct coverage rates and independence of VaR violations. Then, financial implications of different VaR models, in terms of market risk capital requirements, as defined by the Basel Accord, are considered. Our results, based on the analysis of eight international stock indexes, highlight the presence of conditional skewness and kurtosis, in some case time-varying, and point out that asymmetry plays a significant role in risk management.
Practical implications of higher moments in risk management
GRIGOLETTO, MATTEO;LISI, FRANCESCO
2011
Abstract
In this paper the out-of-sample prediction of Value-at-Risk by means of models accounting for higher moments is studied. We consider models differing in terms of skewness and kurtosis and, in particular, the GARCHDSK model, which allows for constant and dynamic skewness and kurtosis. The issue of VaR prediction performance is approached first from a purely statistical viewpoint, studying the properties concerning correct coverage rates and independence of VaR violations. Then, financial implications of different VaR models, in terms of market risk capital requirements, as defined by the Basel Accord, are considered. Our results, based on the analysis of eight international stock indexes, highlight the presence of conditional skewness and kurtosis, in some case time-varying, and point out that asymmetry plays a significant role in risk management.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.