We state a maximum principle for the gradient of the minima of integral functionals I(u) = integral(Omega) [f(delu) + g(u)]dx. on (u) over bar + W-0(1.1) (Omega), just assuming that I is strictly convex. We do not require that f, g be smooth. nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.

Gradient maximum principle for minima

MARICONDA, CARLO;TREU, GIULIA
2002

Abstract

We state a maximum principle for the gradient of the minima of integral functionals I(u) = integral(Omega) [f(delu) + g(u)]dx. on (u) over bar + W-0(1.1) (Omega), just assuming that I is strictly convex. We do not require that f, g be smooth. nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2489049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact