Hydrogenation properties and mechanical stability of pellets made starting from compressed ball-milled MgH2 powders mixed with catalysts (Nb2O5 and graphite) and a binding agent (aluminium powder) have been investigated. Structural characterization with X-ray diffraction and gas–solid reaction kinetic and thermodynamic tests with a Sievert's apparatus have been done on the samples up to 50 hydrogen absorption/desorption (a/d) cycles. The best cycling behaviour and mechanical strength stability have been observed for pellets of catalysed MgH2 powders added with 5 wt% aluminium annealed in vacuum at 450 °C before starting the a/d cycles. This mechanical stability to cycles has been attributed to the formation of a solid solution of aluminium in magnesium.

Pellets of MgH2-based composites as practical material for solid state hydrogen storage.

KHANDELWAL, ASHISH KUMAR;AGRESTI, FILIPPO;CAPURSO, GIOVANNI;LO RUSSO, SERGIO;MADDALENA, AMEDEO;PRINCIPI, GIOVANNI
2010

Abstract

Hydrogenation properties and mechanical stability of pellets made starting from compressed ball-milled MgH2 powders mixed with catalysts (Nb2O5 and graphite) and a binding agent (aluminium powder) have been investigated. Structural characterization with X-ray diffraction and gas–solid reaction kinetic and thermodynamic tests with a Sievert's apparatus have been done on the samples up to 50 hydrogen absorption/desorption (a/d) cycles. The best cycling behaviour and mechanical strength stability have been observed for pellets of catalysed MgH2 powders added with 5 wt% aluminium annealed in vacuum at 450 °C before starting the a/d cycles. This mechanical stability to cycles has been attributed to the formation of a solid solution of aluminium in magnesium.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 27
  • OpenAlex ND
social impact