We prove the existence, uniqueness and Lipschitz regularity of the minima of the integral functional I(u) = integral (Omega) L(x, u, delu) dx on (u) over bar + W-0(1,q)(Omega) (1 less than or equal to q less than or equal to +infinity) for a class of integrands L(x, z, p) = f(p) + g(x, z) that are convex in (z, p) and for boundary data satisfying some barrier conditions. We do not impose regularity or growth assumptions on L.

Existence and Lipschitz regularity for minima

MARICONDA, CARLO;TREU, GIULIA
2002

Abstract

We prove the existence, uniqueness and Lipschitz regularity of the minima of the integral functional I(u) = integral (Omega) L(x, u, delu) dx on (u) over bar + W-0(1,q)(Omega) (1 less than or equal to q less than or equal to +infinity) for a class of integrands L(x, z, p) = f(p) + g(x, z) that are convex in (z, p) and for boundary data satisfying some barrier conditions. We do not impose regularity or growth assumptions on L.
File in questo prodotto:
File Dimensione Formato  
02existlipreg.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 189.44 kB
Formato Adobe PDF
189.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact