Let L : RN x RN. R be a Borelian function and consider the following problems inf {F(y) = integral(a)(b) L(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) = A, y(b) = B} (P) inf {F**(y) = integral(a)(b) L**(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) - A, y(b) = B}, (P**) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F** if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P) when L is not superlinear.
A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand
MARICONDA, CARLO;TREU, GIULIA
2004
Abstract
Let L : RN x RN. R be a Borelian function and consider the following problems inf {F(y) = integral(a)(b) L(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) = A, y(b) = B} (P) inf {F**(y) = integral(a)(b) L**(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) - A, y(b) = B}, (P**) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F** if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P) when L is not superlinear.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
04A RELAXATION RESULT.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
166.74 kB
Formato
Adobe PDF
|
166.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.