Let L : RN x RN. R be a Borelian function and consider the following problems inf {F(y) = integral(a)(b) L(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) = A, y(b) = B} (P) inf {F**(y) = integral(a)(b) L**(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) - A, y(b) = B}, (P**) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F** if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P) when L is not superlinear.

A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand

MARICONDA, CARLO;TREU, GIULIA
2004

Abstract

Let L : RN x RN. R be a Borelian function and consider the following problems inf {F(y) = integral(a)(b) L(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) = A, y(b) = B} (P) inf {F**(y) = integral(a)(b) L**(y(t), y'(t)) dt : y is an element of AC([a,b], R-N), y(a) - A, y(b) = B}, (P**) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F** if L is just continuous in x. We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P) when L is not superlinear.
File in questo prodotto:
File Dimensione Formato  
04A RELAXATION RESULT.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 166.74 kB
Formato Adobe PDF
166.74 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact