We give some conditions that ensure the validity of a Comparison Principle for the Minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of Minimizers.

A comparison principle and the Lipschitz continuity for minimizers

MARICONDA, CARLO;TREU, GIULIA
2005

Abstract

We give some conditions that ensure the validity of a Comparison Principle for the Minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of Minimizers.
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact