Let L(x, xi) : R-N x R-N -> R be a Borelian function and let (P) be the problem of minimizing integral(b)(a) L(y(t), y'(t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufficient conditions that weaken the classical superlinear growth assumption to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w. r. to xi or continuity of L.

Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth

MARICONDA, CARLO;TREU, GIULIA
2007

Abstract

Let L(x, xi) : R-N x R-N -> R be a Borelian function and let (P) be the problem of minimizing integral(b)(a) L(y(t), y'(t)) dt among the absolutely continuous functions with prescribed values at a and b. We give some sufficient conditions that weaken the classical superlinear growth assumption to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w. r. to xi or continuity of L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact