For the basic problem in the calculus Of variations where the Lagrangian is convex and depends only on the gradient, we establish the continuity of the solutions when the Dirichlet boundary condition is defined by a Continuous function phi. When phi is Lipschitz continuous, then the Solutions are Holder continuous. To cite this article: P. Bousquet et al., C R. Acad. Sci. Paris, Ser. I 346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Holder continuity of solutions to a basic problem in the calculus of variations

MARICONDA, CARLO;TREU, GIULIA
2008

Abstract

For the basic problem in the calculus Of variations where the Lagrangian is convex and depends only on the gradient, we establish the continuity of the solutions when the Dirichlet boundary condition is defined by a Continuous function phi. When phi is Lipschitz continuous, then the Solutions are Holder continuous. To cite this article: P. Bousquet et al., C R. Acad. Sci. Paris, Ser. I 346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
09cras_holder_continuity.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 128.09 kB
Formato Adobe PDF
128.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact