We consider a functional I(u) = integral(Omega)f(del(x)) dx on u(0) + W(1,1)(Omega). Under the assumption that f is just convex, we prove a new Comparison Principle, we improve and give a short proof of Cellina's Comparison result for a new class of minimizers. We then extend a local Lipschitz regularity result obtained recently by Clarke for a wider class of functions f and boundary data u(0) satisfying a new one-sided Bounded Slope Condition. A relaxation result follows.

Local Lipschitz Regularity of Minima For A Scalar Problem of the Calculus of Variations

MARICONDA, CARLO;TREU, GIULIA
2008

Abstract

We consider a functional I(u) = integral(Omega)f(del(x)) dx on u(0) + W(1,1)(Omega). Under the assumption that f is just convex, we prove a new Comparison Principle, we improve and give a short proof of Cellina's Comparison result for a new class of minimizers. We then extend a local Lipschitz regularity result obtained recently by Clarke for a wider class of functions f and boundary data u(0) satisfying a new one-sided Bounded Slope Condition. A relaxation result follows.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact