Let u is an element of phi + W(0)(1,1) (Omega) be a minimum for I(v) = integral(Omega)g(x, v( x)) + f(del v(x))dx where f is convex, v bar right arrow g(x, v) is convex for a. e. x. We prove that u shares the same modulus of continuity of f whenever Omega is sufficiently regular, the right derivative of g satisfies a suitable monotonicity assumption and the following inequality holds for all gamma is an element of partial derivative Omega |u(x) - phi(gamma)| <= omega(|x - gamma|) a. e. x is an element of Omega. This result generalizes the classical Haar-Rado theorem for Lipschitz functions.

A Haar-rado Type Theorem For Minimizers In Sobolev Spaces

MARICONDA, CARLO;TREU, GIULIA
2011

Abstract

Let u is an element of phi + W(0)(1,1) (Omega) be a minimum for I(v) = integral(Omega)g(x, v( x)) + f(del v(x))dx where f is convex, v bar right arrow g(x, v) is convex for a. e. x. We prove that u shares the same modulus of continuity of f whenever Omega is sufficiently regular, the right derivative of g satisfies a suitable monotonicity assumption and the following inequality holds for all gamma is an element of partial derivative Omega |u(x) - phi(gamma)| <= omega(|x - gamma|) a. e. x is an element of Omega. This result generalizes the classical Haar-Rado theorem for Lipschitz functions.
2011
File in questo prodotto:
File Dimensione Formato  
2010_Haar_Rado.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 200.75 kB
Formato Adobe PDF
200.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2486768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact