Thanks to their properties of ultra-lightness and high strength/weight ratio, Mg and Al alloys find increasing employ in aerospace, automotive and biomedical applications. These alloys can be formed using all the conventional technologies used for the other materials, like casting and forming. However, the mechanical properties of the final components are significantly influenced by the quality of the starting liquid metal. In fact, the quality of the starting liquid metal has been substantially increased in recent years, thanks to the improvement of cleaning technologies. To this purpose, electromagnetic processing of materials has evolved as an important experimental technique in the fields of material processing, associated with applications such as shape controlling, flow driving, online detecting, controlled heat generation, inclusion removing, magnetic levitation. In particular, electromagnetic levitation, as a promising technique, can be helpful to create some new phenomena and discoveries, especially in melting process. This work describes the design, optimization and realization of a cold crucible levitation melting (CCLM) system for light alloys. Electromagnetic models are used and applied in FEM codes to numerical simulate the working range of the CCLM. The simulation results show good agreement with experimental data.
Design and realization of an experimental cold crucible levitation melting system for light alloys
TIMELLI, GIULIO;CHITARIN, GIUSEPPE;TIZIANI, ALBERTO;BONOLLO, FRANCO
2012
Abstract
Thanks to their properties of ultra-lightness and high strength/weight ratio, Mg and Al alloys find increasing employ in aerospace, automotive and biomedical applications. These alloys can be formed using all the conventional technologies used for the other materials, like casting and forming. However, the mechanical properties of the final components are significantly influenced by the quality of the starting liquid metal. In fact, the quality of the starting liquid metal has been substantially increased in recent years, thanks to the improvement of cleaning technologies. To this purpose, electromagnetic processing of materials has evolved as an important experimental technique in the fields of material processing, associated with applications such as shape controlling, flow driving, online detecting, controlled heat generation, inclusion removing, magnetic levitation. In particular, electromagnetic levitation, as a promising technique, can be helpful to create some new phenomena and discoveries, especially in melting process. This work describes the design, optimization and realization of a cold crucible levitation melting (CCLM) system for light alloys. Electromagnetic models are used and applied in FEM codes to numerical simulate the working range of the CCLM. The simulation results show good agreement with experimental data.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.