A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But since practical applications not always allow to get precisely equidistant samples, we relax this condition in this paper and study the Floater–Hormann family of rational interpolants at distributions of nodes which are only almost equidistant. In particular, we show that the corresponding Lebesgue constants still grow logarithmically, albeit with a larger constant than in the case of equidistant nodes.
Barycentric rational interpolation at quasi-equidistant nodes
DE MARCHI, STEFANO
2012
Abstract
A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But since practical applications not always allow to get precisely equidistant samples, we relax this condition in this paper and study the Floater–Hormann family of rational interpolants at distributions of nodes which are only almost equidistant. In particular, we show that the corresponding Lebesgue constants still grow logarithmically, albeit with a larger constant than in the case of equidistant nodes.File | Dimensione | Formato | |
---|---|---|---|
lebesgue-quasi.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
222.79 kB
Formato
Adobe PDF
|
222.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.