Quantum walk represents one of the most promising resources for the simulation of physical quantum systems, and has also emerged as an alternative to the standard circuit model for quantum computing. Here we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such an experiment has been realized by exploiting polarization entanglement to simulate the bunching-antibunching feature of noninteracting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behavior, maintaining remarkable control on both phase and balancement.

Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics

VALLONE, GIUSEPPE;
2012

Abstract

Quantum walk represents one of the most promising resources for the simulation of physical quantum systems, and has also emerged as an alternative to the standard circuit model for quantum computing. Here we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such an experiment has been realized by exploiting polarization entanglement to simulate the bunching-antibunching feature of noninteracting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behavior, maintaining remarkable control on both phase and balancement.
File in questo prodotto:
File Dimensione Formato  
2012-01-PRL.108.010502.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2482684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 516
  • ???jsp.display-item.citation.isi??? 470
  • OpenAlex ND
social impact