We prove that for any H : R(2) -> R which is Z(2)-periodic, there exists H(epsilon), which is smooth, epsilon-close to H in L(1), with L(infinity)-norm controlled by the one of H, and with the same average of H, for which there exists a smooth closed curve gamma(epsilon) whose curvature is H(epsilon). A pinning phenomenon for curvature driven flow with a periodic forcing term then follows. Namely, curves in fine periodic media may be moved only by small amounts, of the order of the period.

Closed curves of prescribed curvature and a pinning effect

NOVAGA, MATTEO;
2011

Abstract

We prove that for any H : R(2) -> R which is Z(2)-periodic, there exists H(epsilon), which is smooth, epsilon-close to H in L(1), with L(infinity)-norm controlled by the one of H, and with the same average of H, for which there exists a smooth closed curve gamma(epsilon) whose curvature is H(epsilon). A pinning phenomenon for curvature driven flow with a periodic forcing term then follows. Namely, curves in fine periodic media may be moved only by small amounts, of the order of the period.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2479997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact