One of the most appealing features concerned with nanomodification of polymeric resins for structural applications is the perspective of obtaining high toughness even at low nanofiller volume fractions. Such performances are related to the energy dissipated through the damage mechanisms taking place at the nanoscale. Among these, nanoparticle debonding could take an important role either as a mechanism itself or as a trigger for phenomena like plastic void growth or matrix shear yielding. In the present work, a model for the hydrostatic tension related to debonding is presented. The model accounts for some important issues inherently related to the nanoscale with particular reference to the emergence of an interphase surrounding the nanoparticle. Results can be useful in view of a multi-scale modelling of the problem.

Influence of the interphase zone on the nanoparticle debonding stress

ZAPPALORTO, MICHELE;SALVIATO, MARCO;QUARESIMIN, MARINO
2011

Abstract

One of the most appealing features concerned with nanomodification of polymeric resins for structural applications is the perspective of obtaining high toughness even at low nanofiller volume fractions. Such performances are related to the energy dissipated through the damage mechanisms taking place at the nanoscale. Among these, nanoparticle debonding could take an important role either as a mechanism itself or as a trigger for phenomena like plastic void growth or matrix shear yielding. In the present work, a model for the hydrostatic tension related to debonding is presented. The model accounts for some important issues inherently related to the nanoscale with particular reference to the emergence of an interphase surrounding the nanoparticle. Results can be useful in view of a multi-scale modelling of the problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2479822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 104
  • OpenAlex ND
social impact