Orthogonal frequency division multiplexing (OFDM) is a very popular modulation scheme because it requires a very simple receiver in transforming a frequency-selective channel into multiple flat-fading channels. Furthermore, multiple-input-multiple-output (MIMO) OFDM systems employing transmit diversity techniques, such as space-time (ST) and space-frequency (SF) coding, increase robustness and reliability over wireless fading channels. However, time-variation of the channel due to mobility disrupts orthogonality among subcarriers and yields intercarrier interference (ICI), limiting the performance of OFDM. In this paper we first recall a reduced-complexity technique to mitigate ICI in single-input-single-output (SISO) OFDM systems denoted per sub-block equalization (PSE) which operates on sub-blocks of the received OFDM symbol. Next we propose an extension of PSE to MIMO SF-OFDM systems. In particular, the Alamouti scheme is used in conjunction with PSE to combat ICI. Performance of the proposed scheme is evaluated for mobile digital video broadcasting DVB-T2 2 × 1 and 2 × 2 MIMO scenarios that suit with a possible extension to handheld devices in a next generation DVB-H. Numerical results show that the new receiver provides a gain from 21% to 33% with respect to the conventional OFDM receiver in terms of vehicular speed at which a target bit error rate can be maintained.

A frequency domain pre-equalizer for MIMO-OFDM mobile communication systems employing alamouti coding

VANGELISTA, LORENZO
2011

Abstract

Orthogonal frequency division multiplexing (OFDM) is a very popular modulation scheme because it requires a very simple receiver in transforming a frequency-selective channel into multiple flat-fading channels. Furthermore, multiple-input-multiple-output (MIMO) OFDM systems employing transmit diversity techniques, such as space-time (ST) and space-frequency (SF) coding, increase robustness and reliability over wireless fading channels. However, time-variation of the channel due to mobility disrupts orthogonality among subcarriers and yields intercarrier interference (ICI), limiting the performance of OFDM. In this paper we first recall a reduced-complexity technique to mitigate ICI in single-input-single-output (SISO) OFDM systems denoted per sub-block equalization (PSE) which operates on sub-blocks of the received OFDM symbol. Next we propose an extension of PSE to MIMO SF-OFDM systems. In particular, the Alamouti scheme is used in conjunction with PSE to combat ICI. Performance of the proposed scheme is evaluated for mobile digital video broadcasting DVB-T2 2 × 1 and 2 × 2 MIMO scenarios that suit with a possible extension to handheld devices in a next generation DVB-H. Numerical results show that the new receiver provides a gain from 21% to 33% with respect to the conventional OFDM receiver in terms of vehicular speed at which a target bit error rate can be maintained.
2011
Proceedings of IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2477981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact