Community structures are an important feature of many social, biological, and technological networks. Here we study a variation on the method for detecting such communities proposed by Girvan and Newman and based on the idea of using centrality measures to define the community boundaries [M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)]. We develop an algorithm of hierarchical clustering that consists in finding and removing iteratively the edge with the highest information centrality. We test the algorithm on computer generated and real-world networks whose community structure is already known or has been studied by means of other methods. We show that our algorithm, although it runs to completion in a time O(n^4), is very effective especially when the communities are very mixed and hardly detectable by the other methods.
Method to find community structures based on information centrality
MARCHIORI, MASSIMO
2004
Abstract
Community structures are an important feature of many social, biological, and technological networks. Here we study a variation on the method for detecting such communities proposed by Girvan and Newman and based on the idea of using centrality measures to define the community boundaries [M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)]. We develop an algorithm of hierarchical clustering that consists in finding and removing iteratively the edge with the highest information centrality. We test the algorithm on computer generated and real-world networks whose community structure is already known or has been studied by means of other methods. We show that our algorithm, although it runs to completion in a time O(n^4), is very effective especially when the communities are very mixed and hardly detectable by the other methods.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.