We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flat modules, and we deduce, using a recent result of Saroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod -R unless R is right perfect.

Flat Mittag-Leffler modules over countable rings

BAZZONI, SILVANA;
2012

Abstract

We show that over any ring, the double Ext-orthogonal class to all flat Mittag-Leffler modules contains all countable direct limits of flat Mittag-Leffler modules. If the ring is countable, then the double orthogonal class consists precisely of all flat modules, and we deduce, using a recent result of Saroch and Trlifaj, that the class of flat Mittag-Leffler modules is not precovering in Mod -R unless R is right perfect.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2476300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact