This paper extends the current literature on the variance-causality topic providing the coefficient restrictions ensuring variance noncausality within multivariate GARCH models with in-mean effects. Furthermore, this paper presents a new multivariate model, the exponential causality GARCH. By the introduction of a multiplicative causality impact function, the variance causality effects becomes directly interpretable and can therefore be used to detect both the existence of causality and its direction; notably, the proposed model allows for increasing and decreasing variance effects. An empirical application evidences negative causality effects between returns and volume of an Italian stock market index future contract.
Variance (non) causality in multivariate GARCH
CAPORIN, MASSIMILIANO
2007
Abstract
This paper extends the current literature on the variance-causality topic providing the coefficient restrictions ensuring variance noncausality within multivariate GARCH models with in-mean effects. Furthermore, this paper presents a new multivariate model, the exponential causality GARCH. By the introduction of a multiplicative causality impact function, the variance causality effects becomes directly interpretable and can therefore be used to detect both the existence of causality and its direction; notably, the proposed model allows for increasing and decreasing variance effects. An empirical application evidences negative causality effects between returns and volume of an Italian stock market index future contract.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.