This paper extends the current literature on the variance-causality topic providing the coefficient restrictions ensuring variance noncausality within multivariate GARCH models with in-mean effects. Furthermore, this paper presents a new multivariate model, the exponential causality GARCH. By the introduction of a multiplicative causality impact function, the variance causality effects becomes directly interpretable and can therefore be used to detect both the existence of causality and its direction; notably, the proposed model allows for increasing and decreasing variance effects. An empirical application evidences negative causality effects between returns and volume of an Italian stock market index future contract.

Variance (non) causality in multivariate GARCH

CAPORIN, MASSIMILIANO
2007

Abstract

This paper extends the current literature on the variance-causality topic providing the coefficient restrictions ensuring variance noncausality within multivariate GARCH models with in-mean effects. Furthermore, this paper presents a new multivariate model, the exponential causality GARCH. By the introduction of a multiplicative causality impact function, the variance causality effects becomes directly interpretable and can therefore be used to detect both the existence of causality and its direction; notably, the proposed model allows for increasing and decreasing variance effects. An empirical application evidences negative causality effects between returns and volume of an Italian stock market index future contract.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2475864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact