The manual analysis of the karyogram is a complex and time-consuming operation, as it requires meticulous attention to details and well-trained personnel. Routine Q-band laboratory images show chromosomes that are randomly rotated, blurred or corrupted by overlapping and dye stains. We address here the problem of robust automatic classification, which is still an open issue. The proposed method starts with an improved estimation of the chromosome medial axis, along which an established set of features is then extracted. The following novel polarization stage estimates the chromosome orientation and makes this feature set independent on the reading direction along the axis. Feature rescaling and normalizing techniques take full advantage of the results of the polarization step, reducing the intra-class and increasing the inter-class variances. After a standard neural network based classification, a novel class reassignment algorithm is employed to maximize the probability of correct classification, by exploiting the constrained composition of the human karyotype. An average 94% of correct classification was achieved by the proposed method on 5474 chromosomes, whose images were acquired during laboratory routine and comprise karyotypes belonging to slightly different prometaphase stages. In order to provide the scientific community with a public dataset, all the data we used are publicly available for download.

A modular framework for the automatic classification of chromosomes in Q-band images

POLETTI, ENEA;GRISAN, ENRICO;RUGGERI, ALFREDO
2012

Abstract

The manual analysis of the karyogram is a complex and time-consuming operation, as it requires meticulous attention to details and well-trained personnel. Routine Q-band laboratory images show chromosomes that are randomly rotated, blurred or corrupted by overlapping and dye stains. We address here the problem of robust automatic classification, which is still an open issue. The proposed method starts with an improved estimation of the chromosome medial axis, along which an established set of features is then extracted. The following novel polarization stage estimates the chromosome orientation and makes this feature set independent on the reading direction along the axis. Feature rescaling and normalizing techniques take full advantage of the results of the polarization step, reducing the intra-class and increasing the inter-class variances. After a standard neural network based classification, a novel class reassignment algorithm is employed to maximize the probability of correct classification, by exploiting the constrained composition of the human karyotype. An average 94% of correct classification was achieved by the proposed method on 5474 chromosomes, whose images were acquired during laboratory routine and comprise karyotypes belonging to slightly different prometaphase stages. In order to provide the scientific community with a public dataset, all the data we used are publicly available for download.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2474463
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact