By using the notion of contraction of Lie groups, we transfer L(p)-L(2) estimates for joint spectral projectors from the unit complex sphere S(2n+1) in C(n+1) to the reduced Heisenberg group h(n). In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on h(n). As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian L on h(n).
Transferring L^p eigenfunction bounds from S^(2n+1) to h^n
CASARINO, VALENTINA;CIATTI, PAOLO
2009
Abstract
By using the notion of contraction of Lie groups, we transfer L(p)-L(2) estimates for joint spectral projectors from the unit complex sphere S(2n+1) in C(n+1) to the reduced Heisenberg group h(n). In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on h(n). As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian L on h(n).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
casarino-ciatti-studia-pre.pdf
accesso aperto
Descrizione: Bozza finale post-referaggio
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
613.3 kB
Formato
Adobe PDF
|
613.3 kB | Adobe PDF | Visualizza/Apri |
sm194-1-02-1.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
260.05 kB
Formato
Adobe PDF
|
260.05 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.