By using the notion of contraction of Lie groups, we transfer L(p)-L(2) estimates for joint spectral projectors from the unit complex sphere S(2n+1) in C(n+1) to the reduced Heisenberg group h(n). In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on h(n). As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian L on h(n).

Transferring L^p eigenfunction bounds from S^(2n+1) to h^n

CASARINO, VALENTINA;CIATTI, PAOLO
2009

Abstract

By using the notion of contraction of Lie groups, we transfer L(p)-L(2) estimates for joint spectral projectors from the unit complex sphere S(2n+1) in C(n+1) to the reduced Heisenberg group h(n). In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on h(n). As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian L on h(n).
2009
File in questo prodotto:
File Dimensione Formato  
casarino-ciatti-studia-pre.pdf

accesso aperto

Descrizione: Bozza finale post-referaggio
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 613.3 kB
Formato Adobe PDF
613.3 kB Adobe PDF Visualizza/Apri
sm194-1-02-1.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 260.05 kB
Formato Adobe PDF
260.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2472801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact