The activities of enzymes involved in ammonia metabolism ferredoxin-dependent glutamate synthase (Fd-GOGAT), glutamine synthetase (GS) and glutamate dehydrogenase (GDH), the rates of photosynthetic oxygen evolution, dark respiration, and the activity of RuBP carboxylase (RuBPC) were determined in alfalfa (Medicago sativa L.) leaves taken from the apex (apical leaves), from the second to the fourth internode (mature leaves) and from the bottom of the canopy (basal leaves). Photosynthetic rate and the activities of RuBPC, GS and Fd-GOGAT showed their maximum in the mature leaves. The respiration rate together with amino acid and ammonium contents decreased with leaf age, whereas the opposite was true for GDH activity. Basal leaves still maintained substantial levels of chlorophylls, GS and Fd-GOGAT activities and oxygen evolution rate, thus suggesting that photosynthesis has some role in the reassimilation of the nitrogen liberated during protein degradation.

Enzymes of ammonia assimilation, photosynthesis and respiration in alfaalfa leaves of different ages

GHISI, ROSSELLA;FERRETTI, MASSIMO;LA ROCCA, NICOLETTA;MASI, ANTONIO;
1999

Abstract

The activities of enzymes involved in ammonia metabolism ferredoxin-dependent glutamate synthase (Fd-GOGAT), glutamine synthetase (GS) and glutamate dehydrogenase (GDH), the rates of photosynthetic oxygen evolution, dark respiration, and the activity of RuBP carboxylase (RuBPC) were determined in alfalfa (Medicago sativa L.) leaves taken from the apex (apical leaves), from the second to the fourth internode (mature leaves) and from the bottom of the canopy (basal leaves). Photosynthetic rate and the activities of RuBPC, GS and Fd-GOGAT showed their maximum in the mature leaves. The respiration rate together with amino acid and ammonium contents decreased with leaf age, whereas the opposite was true for GDH activity. Basal leaves still maintained substantial levels of chlorophylls, GS and Fd-GOGAT activities and oxygen evolution rate, thus suggesting that photosynthesis has some role in the reassimilation of the nitrogen liberated during protein degradation.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2471753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact