Computationally exact and approximate solutions of the Leslie-Ericksen equations for nematic liquid crystals in two dimensions are employed to calculate director distributions in cylindrical samples, rotating under the influence of a magnetic field. In particular, the time evolution of systems prepared initially in metastable states with respect to the magnetic field is investigated, and calculated director distributions are used to interpret rheo-NMR experiments in nematic liquid crystal polymers.
Simulations of Flow-Induced Director Structures in Nematic Liquid Crystals through Leslie-ericksen Equations. II. Interpretation of NMR Experiments in Polymer Liquid Crystals
POLIMENO, ANTONINO;ORIAN, LAURA
2000
Abstract
Computationally exact and approximate solutions of the Leslie-Ericksen equations for nematic liquid crystals in two dimensions are employed to calculate director distributions in cylindrical samples, rotating under the influence of a magnetic field. In particular, the time evolution of systems prepared initially in metastable states with respect to the magnetic field is investigated, and calculated director distributions are used to interpret rheo-NMR experiments in nematic liquid crystal polymers.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.