In this paper neural networks are utilised to represent the rheological behaviour of the Nickel-base superalloy Nimonic 80A under deformation conditions approximating thermo-mechanical cycles of industrial hot forging operations. A feed-forward back-propagation neural network has been trained and tested on rheological data, obtained from hot compression experiments, performed under single- and multi-step deformation conditions, both at constant and varying strain rate. The good agreement between experimental and calculated flow curves shows that a properly trained neural network can be successfully employed in representing material response to hot forging cycles.

Prediction of Nickel-base superalloys rheological behaviour under hot forging conditions using artificial neural networks

BARIANI, PAOLO FRANCESCO;BRUSCHI, STEFANIA;
2004

Abstract

In this paper neural networks are utilised to represent the rheological behaviour of the Nickel-base superalloy Nimonic 80A under deformation conditions approximating thermo-mechanical cycles of industrial hot forging operations. A feed-forward back-propagation neural network has been trained and tested on rheological data, obtained from hot compression experiments, performed under single- and multi-step deformation conditions, both at constant and varying strain rate. The good agreement between experimental and calculated flow curves shows that a properly trained neural network can be successfully employed in representing material response to hot forging cycles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2470896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact