BACKGROUND: Alpha1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins. With the hypothesis that SP-A could bind alpha1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. METHODS AND RESULTS: At an alpha1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of alpha1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of alpha1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing alpha1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the alpha1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of alpha1-antitrypsin. CONCLUSION: We conclude that the binding of SP-A to alpha1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of alpha1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents.
SP-A binds alpha(1)-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase
DALZOPPO, DANIELE;BARITUSSIO, ALDO;
2005
Abstract
BACKGROUND: Alpha1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins. With the hypothesis that SP-A could bind alpha1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. METHODS AND RESULTS: At an alpha1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of alpha1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of alpha1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing alpha1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the alpha1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of alpha1-antitrypsin. CONCLUSION: We conclude that the binding of SP-A to alpha1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of alpha1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents.File | Dimensione | Formato | |
---|---|---|---|
Respiratory Research 2005- SP-A binds anti(1)-antitrypsin.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
830.67 kB
Formato
Adobe PDF
|
830.67 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.