Patients infected with human immunodeficiency virus type 1 (HIV-1) develop a spectrum of B cell lymphoproliferative disorders ranging from polyclonal B cell activation to B cell lymphomas. While a direct role of Epstein-Barr virus (EBV) is well recognized for most of these lesions, recent findings have suggested that transactivator HIV-1 Tat protein might be involved in the pathogenesis of B cell lymphomas. Tat-expressing EBV-positive B cells were generated by transduction with a retroviral Tat-encoding vector. B(Tat+) cells expressed lower levels of anti-apoptotic protein Bcl-2 than parental and control B(Tat-) cells, generated by transduction with an empty retroviral vector, and were more prone to apoptosis upon serum withdrawal, as assessed by analysis of annexin V-stained cells and cleavage of poly-ADP-ribose-polymerase by caspase 3. Nevertheless, in serum starvation, B(Tat-) cells mainly exhibited the Rb hypo-phosphorylated form, underwent cell cycle arrest, and grew in single cell suspension, while B(Tat+) cells displayed the Rb hyper-phoshorylated form, progressed throughout the cell cycle, and retained the ability to grow in small clumps. Finding that B(Tat+) cells maintained proliferative capacity upon serum withdrawal suggests that cells expressing Tat have growth advantages among the EBV-driven cell proliferations and may originate B cell clones with more oncogenic potential

Human immunodeficiency virus type 1 Tat protein modulates cell cycle and apoptosis in Epstein-Barr virus-immortalized B cells

INDRACCOLO, STEFANO;CHIECO BIANCHI, LUIGI;DE ROSSI, ANITA
2004

Abstract

Patients infected with human immunodeficiency virus type 1 (HIV-1) develop a spectrum of B cell lymphoproliferative disorders ranging from polyclonal B cell activation to B cell lymphomas. While a direct role of Epstein-Barr virus (EBV) is well recognized for most of these lesions, recent findings have suggested that transactivator HIV-1 Tat protein might be involved in the pathogenesis of B cell lymphomas. Tat-expressing EBV-positive B cells were generated by transduction with a retroviral Tat-encoding vector. B(Tat+) cells expressed lower levels of anti-apoptotic protein Bcl-2 than parental and control B(Tat-) cells, generated by transduction with an empty retroviral vector, and were more prone to apoptosis upon serum withdrawal, as assessed by analysis of annexin V-stained cells and cleavage of poly-ADP-ribose-polymerase by caspase 3. Nevertheless, in serum starvation, B(Tat-) cells mainly exhibited the Rb hypo-phosphorylated form, underwent cell cycle arrest, and grew in single cell suspension, while B(Tat+) cells displayed the Rb hyper-phoshorylated form, progressed throughout the cell cycle, and retained the ability to grow in small clumps. Finding that B(Tat+) cells maintained proliferative capacity upon serum withdrawal suggests that cells expressing Tat have growth advantages among the EBV-driven cell proliferations and may originate B cell clones with more oncogenic potential
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2469915
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact